Negative Tree Reweighted Belief Propagation
نویسندگان
چکیده
We introduce a new class of lower bounds on the log partition function of a Markov random field which makes use of a reversed Jensen’s inequality. In particular, our method approximates the intractable distribution using a linear combination of spanning trees with negative weights. This technique is a lower-bound counterpart to the tree-reweighted belief propagation algorithm, which uses a convex combination of spanning trees with positive weights to provide corresponding upper bounds. We develop algorithms to optimize and tighten the lower bounds over the non-convex set of valid parameter values. Our algorithm generalizes mean field approaches (including näıve and structured mean field approximations), which it includes as a limiting case.
منابع مشابه
Tree-reweighted belief propagation algorithms and approximate ML estimation by pseudo-moment mat hing
متن کامل
Cooled and Relaxed Survey Propagation for MRFs
We describe a new algorithm, Relaxed Survey Propagation (RSP), for finding MAP configurations in Markov random fields. We compare its performance with state-of-the-art algorithms including the max-product belief propagation, its sequential tree-reweighted variant, residual (sum-product) belief propagation, and tree-structured expectation propagation. We show that it outperforms all approaches f...
متن کاملMAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies
Finding the most probable assignment (MAP) in a general graphical model is known to be NP hard but good approximations have been attained with max-product belief propagation (BP) and its variants. In particular, it is known that using BP on a single-cycle graph or tree reweighted BP on an arbitrary graph will give the MAP solution if the beliefs have no ties. In this paper we extend the setting...
متن کاملLinear Programming Relaxations and Belief Propagation - An Empirical Study
The problem of finding the most probable (MAP) configuration in graphical models comes up in a wide range of applications. In a general graphical model this problem is NP hard, but various approximate algorithms have been developed. Linear programming (LP) relaxations are a standard method in computer science for approximating combinatorial problems and have been used for finding the most proba...
متن کاملLocally-Optimized Reweighted Belief Propagation for Decoding LDPC Codes with Finite-Length
In practice, LDPC codes are decoded using message passing methods. These methods offer good performance but tend to converge slowly and sometimes fail to converge and to decode the desired codewords correctly. Recently, tree-reweighted message passing methods have been modified to improve the convergence speed at little or no additional complexity cost. This paper extends this line of work and ...
متن کامل